Protecting the Lungs

PGA New York 12/07

Disclosures:

Peter Slinger MD, FRCPC University of Toronto

58 y.o. Male, Chronic Gallstone Pancreatitis, Open Cholecystectomy

100 pack/year smoker Dyspnea > 1 block WHY dyspneic? Rule-out Cardiac etiol: ECG, TTEcho, Myocardial perfusion stress assess

 Rule-in Respiratory etiology

Protecting the Lungs: From Who/What?

- The Patient him/herself
- The Perioperative Experience (Surgeon)
- The Anesthesiologist

Preoperative Assessment

 History: Cough , Sputum, Exercise Tol. (Infection) Auscultation (Bronchospasm) Lab tests: CXR Spirometry ABG

Preoperative Assessment

 History: cough , sputum, exercise Tol. (Infection) Auscultation (Bronchospasm) Lab tests: CXR Spirometry ABG

 Forced Expiratory volume (FEV1%) mild 80=50% mod. 50-35% severe < 35%FEV1/FVC ratio < 0.7= obstruction Post-bronchodilator **FEV1%** increase >10% =a/w reactivity

Preoperative Assessment

 History: cough , sputum, exercise Tol. (Infection) Auscultation (Bronchospasm) Lab tests: CXR Spirometry **Arterial Blood Gas**

Protecting the Lungs: From Who/What?

The Patient him/herself

 The Perioperative Experience (Surgeon)

 The Anesthesiologist

Helping Surgical Patients Quit Smoking Warner DO, Anesth Analg 2005; 101: 481-7

Surgical Benefits:

- Decrease ST changes intraop.: 2 days
- Decrease wound complic's: <u>></u>4wk.
- ◆ Decrease Resp. Complications : Cardiac: ≥8 wk. Thoracic: anytime

Abstinence @ 1yr:
After ACB: 55%
Angioplasty : 25%
Angiography: 14%

Preoperative Physiotherapy

 Particularly in patients with excessive secretions

No proven superior modality

 Proven decrease in pulmonary complications in COPD

Warner DO, Anesthesiology 2000, 92: 1467

Protecting the Lungs: From Who/What?

 The Patient him/herself

 The Perioperative Experience (Surgeon) Atelectasis Analgesia

 The Anesthesiologist

Atelectasis

Intra-op.

Recovery Room

Pulmonary Atelectasis

Duggan M, Kavanagh B. Anesthesiology 2005, 102: 838-54

Pulmonary Atelectasis

Duggan M, Kavanagh B. Anesthesiology 2005, 102: 838-54

Atelectasis

Atelectasis Causes Lung Injury in Non-Atelectatic Lung Regions

Tschudia S, et al. AJRCCM 2006: 174: 279-89

Non-Dependent

- Rat lung injury model
- Lg. Vol. Vent.
- Distal airway injury all regions
- Alveolar injury more severe in nondependent, nonatelectatic regions

CPAP Treatment of Post-op. Hypoxemia Squadrone V, et al. JAMA 2005, 293: 589-95

Patients:

- ♦ n= 209
- Major Abd. Surg.
- PaO2/FiO2<300
 post-op. in
 Rec.Room
- FiO2 0.5 by mask or CPAP until PaO2/FiO2 stable
 >300 (19-28h)

Results:

- CPAP decreased sepsis (p= .03)
- Decreased
- pneumonia (p= .02)
- Decreased reintubation (p< .01)

The Comparative Effects of Analgesia on Pulmonary Outcomes : Meta-Analysis

Ballantyne JC, et al. Anesth Analg 1998, 86: 598

- <u>Atelectasis</u> decreased: Epidural opioid/LA vs. Systemic opioid
- <u>Pulmonary Infections</u> decreased Epidural opioid/LA vs. Systemic opioid
- Pain VAS movement (not PFTs) correlate with outcome

Epidural Anaesthesia and Analgesia and Outcome of Major Surgery (MASTER) n =888, random., ASA >/=3, Abd./Esoph. Surg., 225/ 447 Epidural > 72h.

Mortality Epidural vs. IV: ns.
Cardiac/Renal/GI/ Sepsis: ns.
Resp. Fail. Epid. vs. IV: 23% vs. 30% (.02)
Analgesia: Epid. vs. IV @ rest n.s., with cough <.001

Rigg JRA, et al. Lancet 359: 1276-82, 2002

Protecting the Lungs: From Who/What?

- The Patient him/herself
- The Perioperative Experience (Surgeon)
- The Anesthesiologist: Lung Injury

Extravascular Lung Water after Pneumonectomy in Sheep

Kuzkov V, et al. Crit Care Med 35: 1550-9, 2007

Principles of Lung-Protective Ventilation:

Mimic normal spontaneous ventilation
FiO2 as low as safe
Tidal volumes 4-6 ml/kg
Frequent recruitment maneuvers
Vary position / vary tidal volume
PEEP to maintain FRC

Fan E, et al. JAMA. 2005; 294:2889-96

Low Tidal Vol. + PEEP Prevents Alveolar Coagulation in Patients Without Lung Injury

Choi G, et al. Anesthesiology 2006; 105: 689-95

Transfusion-Related Acute Lung Injury Bux J, Sachs U. Br J Haem 136: 788-99, 2007

Normal Circulating Neutrophil

Normal Neutrophil

Deformed Neutrophil

Primed Neutrophil

Human Leukocyte Antigen

Human Neutrophil Antigen

"One Hit"

"One Hit"

Damaged Pulmonary Capillary ICAM

Cytokine Release

"Two Hit"

"One Hit"

Protecting the Lungs: From Who/What?

The Patient: **Smoking Cessation** Physiotherapy The Perioperative **Experience:** Atelectais Analgesia Anesthesiologist: Ventilation TRALI